Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Diabetes ; 15(2): 86-96, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2213417

ABSTRACT

BACKGROUND: Patients with diabetes are more likely to suffer COVID-19 complications. Using noninsulin antihyperglycemic medications (AGMs) during COVID-19 infection has proved challenging. In this study, we evaluate different noninsulin AGMs in patients with COVID-19. METHODS: We searched Medline, Embase, Web of Science, and Cochrane on 24 January 2022. We used the following keywords (COVID-19) AND (diabetes mellitus) AND (antihyperglycemic agent). The inclusion criteria were studies reporting one or more of the outcomes. We excluded non-English articles, case reports, and literature reviews. Study outcomes were mortality, hospitalization, and intensive care unit (ICU) admission. RESULTS: The use of metformin rather than other glucose-lowering medications was associated with statistically significant lower mortality (risk ratio [RR]: 0.60, 95% confidence interval [CI]: 0.47, 0.77, p < .001). Dipeptidyl peptidase-4 inhibitor (DPP-4i) use was associated with statistically significantly higher hospitalization risk (RR: 1.44, 95% CI: 1.23, 1.68, p < .001) and higher risk of ICU admissions and/or mechanical ventilation vs nonusers (RR: 1.24, 95% CI: 1.04, 1.48, p < .02). There was a statistically significant decrease in hospitalization for SGLT-2i users vs nonusers (RR: 0.89, 95% CI: 0.84-0.95, p < .001). Glucagon-like peptide-1 receptor agonist (GLP-1RA) use was associated with a statistically significant decrease in mortality (RR: 0.56, 95% CI: 0.42, 073, p < 0.001), ICU admission, and/or mechanical ventilation (RR: 0.79, 95% CI: 0.69-0.89, p < .001), and hospitalization (RR: 0.73, 95% CI: 0.54, 0.98, p = .04). CONCLUSIONS: AGM use was not associated with increased mortality. However, metformin and GLP-1RA use reduced mortality risk statistically significantly. DPP-4i use was associated with a statistically significant increase in the risk of hospitalization and admission to the ICU.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Humans , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , COVID-19/epidemiology , COVID-19/complications , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Metformin/therapeutic use , Glucagon-Like Peptide-1 Receptor
2.
J Diabetes ; 13(3): 243-252, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-933955

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is currently posing significant threats to public health worldwide. It is notable that a substantial proportion of patients with sever COVID-19 have coexisting diabetic conditions, indicating the progression and outcome of COVID-19 may relate to diabetes. However, it is still unclear whether diabetic treatment principles can be used for the treatment of COVID-19. METHODS: We conducted a computational approach to screen all commonly used clinical oral hypoglycemic drugs to identify the potential inhibitors for the main protease (Mpro ) of SARS-CoV-2, which is one of the key drug targets for anti-COVID-19 drug discovery. RESULTS: Six antidiabetic drugs with docking scores higher than 8.0 (cutoff value), including repaglinide, canagliflozin, glipizide, gliquidone, glimepiride, and linagliptin, were predicted as the promising inhibitors of Mpro . Interestingly, repaglinide, one of the six antidiabetic drugs with the highest docking score for Mpro , was similar to a previously predicted active molecule nelfinavir, which is a potential anti-HIV and anti-COVID-19 drug. Moreover, we found repaglinide shared similar docking pose and pharmacophores with a reported ligand (N3 inhibitor) and nelfinavir, demonstrating that repaglinide would interact with Mpro in a similar way. CONCLUSION: These results indicated that these six antidiabetic drugs may have an extra effect on the treatment of COVID-19, although further studies are necessary to confirm these findings.


Subject(s)
COVID-19 Drug Treatment , Hypoglycemic Agents/pharmacology , Viral Matrix Proteins/antagonists & inhibitors , A549 Cells , Antiviral Agents/pharmacology , Binding Sites , Drug Discovery , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Nelfinavir/pharmacology , Protease Inhibitors/pharmacology
3.
J Diabetes ; 12(9): 659-667, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-245563

ABSTRACT

The antimalarial drug hydroxychloroquine (HCQ) has long been used as a disease-modifying antirheumatic drug for the treatment of several inflammatory rheumatic diseases. Over the last three decades, various studies have shown that HCQ also plays a role in the regulation of glucose homeostasis. Although the mechanisms of action underlying the glucose-lowering properties of HCQ are still not entirely clear, evidence suggests that this drug may exert multifaceted effects on glucose regulation, including improvement of insulin sensitivity, increase of insulin secretion, reduction of hepatic insulin clearance, and reduction of systemic inflammation. Preliminary studies have shown the safety and efficacy of HCQ (at a dose ranging from 400 to 600 mg/day) in patients with type 2 diabetes over a short-term period. In 2014, HCQ has been approved in India as an add-on hypoglycemic agent for patients with uncontrolled type 2 diabetes. However, large randomized controlled trials are needed to establish the safety and efficacy profile of HCQ in patients with type 2 diabetes over a long-term period. With regard to the COVID-19 pandemic, several medications (including HCQ) have been used as off-label drugs because of the lack of proven effective therapies. However, emerging evidence shows limited benefit from HCQ use in COVID-19 in general. The aim of this manuscript is to comprehensively summarize the current knowledge on the antihyperglycemic properties of HCQ and to critically evaluate the potential risks and benefits related to HCQ use in patients with diabetes, even in light of the current pandemic scenario.


Subject(s)
Coronavirus Infections , Diabetes Complications/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Pandemics , Pneumonia, Viral , Antiviral Agents , COVID-19 , Coronavirus Infections/drug therapy , Humans , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL